(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f4(S(x''), S(x'), x3, x4, S(x)) → f2(S(x''), x', x3, x4, x)
f4(S(x'), 0, x3, x4, S(x)) → f3(x', 0, x3, x4, x)
f2(x1, x2, S(x''), S(x'), S(x)) → f5(x1, x2, S(x''), x', x)
f2(x1, x2, S(x'), 0, S(x)) → f3(x1, x2, x', 0, x)
f4(S(x'), S(x), x3, x4, 0) → 0
f4(S(x), 0, x3, x4, 0) → 0
f2(x1, x2, S(x'), S(x), 0) → 0
f2(x1, x2, S(x), 0, 0) → 0
f0(x1, S(x'), x3, S(x), x5) → f1(x', S(x'), x, S(x), S(x))
f0(x1, S(x), x3, 0, x5) → 0
f6(x1, x2, x3, x4, S(x)) → f0(x1, x2, x4, x3, x)
f5(x1, x2, x3, x4, S(x)) → f6(x2, x1, x3, x4, x)
f3(x1, x2, x3, x4, S(x)) → f4(x1, x2, x4, x3, x)
f1(x1, x2, x3, x4, S(x)) → f2(x2, x1, x3, x4, x)
f6(x1, x2, x3, x4, 0) → 0
f5(x1, x2, x3, x4, 0) → 0
f4(0, x2, x3, x4, x5) → 0
f3(x1, x2, x3, x4, 0) → 0
f2(x1, x2, 0, x4, x5) → 0
f1(x1, x2, x3, x4, 0) → 0
f0(x1, 0, x3, x4, x5) → 0
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f4(S(x''), S(x'), x3, x4, S(x)) → f2(S(x''), x', x3, x4, x)
f4(S(x'), 0', x3, x4, S(x)) → f3(x', 0', x3, x4, x)
f2(x1, x2, S(x''), S(x'), S(x)) → f5(x1, x2, S(x''), x', x)
f2(x1, x2, S(x'), 0', S(x)) → f3(x1, x2, x', 0', x)
f4(S(x'), S(x), x3, x4, 0') → 0'
f4(S(x), 0', x3, x4, 0') → 0'
f2(x1, x2, S(x'), S(x), 0') → 0'
f2(x1, x2, S(x), 0', 0') → 0'
f0(x1, S(x'), x3, S(x), x5) → f1(x', S(x'), x, S(x), S(x))
f0(x1, S(x), x3, 0', x5) → 0'
f6(x1, x2, x3, x4, S(x)) → f0(x1, x2, x4, x3, x)
f5(x1, x2, x3, x4, S(x)) → f6(x2, x1, x3, x4, x)
f3(x1, x2, x3, x4, S(x)) → f4(x1, x2, x4, x3, x)
f1(x1, x2, x3, x4, S(x)) → f2(x2, x1, x3, x4, x)
f6(x1, x2, x3, x4, 0') → 0'
f5(x1, x2, x3, x4, 0') → 0'
f4(0', x2, x3, x4, x5) → 0'
f3(x1, x2, x3, x4, 0') → 0'
f2(x1, x2, 0', x4, x5) → 0'
f1(x1, x2, x3, x4, 0') → 0'
f0(x1, 0', x3, x4, x5) → 0'
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
f5/1
f5/3
f0/0
f0/2
f0/4
f6/0
f6/3
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f4(S(x''), S(x'), x3, x4, S(x)) → f2(S(x''), x', x3, x4, x)
f4(S(x'), 0', x3, x4, S(x)) → f3(x', 0', x3, x4, x)
f2(x1, x2, S(x''), S(x'), S(x)) → f5(x1, S(x''), x)
f2(x1, x2, S(x'), 0', S(x)) → f3(x1, x2, x', 0', x)
f4(S(x'), S(x), x3, x4, 0') → 0'
f4(S(x), 0', x3, x4, 0') → 0'
f2(x1, x2, S(x'), S(x), 0') → 0'
f2(x1, x2, S(x), 0', 0') → 0'
f0(S(x'), S(x)) → f1(x', S(x'), x, S(x), S(x))
f0(S(x), 0') → 0'
f6(x2, x3, S(x)) → f0(x2, x3)
f5(x1, x3, S(x)) → f6(x1, x3, x)
f3(x1, x2, x3, x4, S(x)) → f4(x1, x2, x4, x3, x)
f1(x1, x2, x3, x4, S(x)) → f2(x2, x1, x3, x4, x)
f6(x2, x3, 0') → 0'
f5(x1, x3, 0') → 0'
f4(0', x2, x3, x4, x5) → 0'
f3(x1, x2, x3, x4, 0') → 0'
f2(x1, x2, 0', x4, x5) → 0'
f1(x1, x2, x3, x4, 0') → 0'
f0(0', x4) → 0'
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
f4(S(x''), S(x'), x3, x4, S(x)) → f2(S(x''), x', x3, x4, x)
f4(S(x'), 0', x3, x4, S(x)) → f3(x', 0', x3, x4, x)
f2(x1, x2, S(x''), S(x'), S(x)) → f5(x1, S(x''), x)
f2(x1, x2, S(x'), 0', S(x)) → f3(x1, x2, x', 0', x)
f4(S(x'), S(x), x3, x4, 0') → 0'
f4(S(x), 0', x3, x4, 0') → 0'
f2(x1, x2, S(x'), S(x), 0') → 0'
f2(x1, x2, S(x), 0', 0') → 0'
f0(S(x'), S(x)) → f1(x', S(x'), x, S(x), S(x))
f0(S(x), 0') → 0'
f6(x2, x3, S(x)) → f0(x2, x3)
f5(x1, x3, S(x)) → f6(x1, x3, x)
f3(x1, x2, x3, x4, S(x)) → f4(x1, x2, x4, x3, x)
f1(x1, x2, x3, x4, S(x)) → f2(x2, x1, x3, x4, x)
f6(x2, x3, 0') → 0'
f5(x1, x3, 0') → 0'
f4(0', x2, x3, x4, x5) → 0'
f3(x1, x2, x3, x4, 0') → 0'
f2(x1, x2, 0', x4, x5) → 0'
f1(x1, x2, x3, x4, 0') → 0'
f0(0', x4) → 0'
Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f4,
f2,
f3,
f5,
f0,
f6They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(8) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f2, f4, f3, f5, f0, f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f2.
(10) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f5, f4, f3, f0, f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f5.
(12) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f6, f4, f3, f0
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f6.
(14) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f0, f4, f3
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f0(
gen_S:0'2_7(
1),
gen_S:0'2_7(
+(
3,
n64850_7))) →
gen_S:0'2_7(
0), rt ∈ Ω(1 + n64850
7)
Induction Base:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, 0))) →RΩ(1)
f1(gen_S:0'2_7(0), S(gen_S:0'2_7(0)), gen_S:0'2_7(2), S(gen_S:0'2_7(2)), S(gen_S:0'2_7(2))) →RΩ(1)
f2(S(gen_S:0'2_7(0)), gen_S:0'2_7(0), gen_S:0'2_7(2), S(gen_S:0'2_7(2)), gen_S:0'2_7(2)) →RΩ(1)
f5(S(gen_S:0'2_7(0)), S(gen_S:0'2_7(1)), gen_S:0'2_7(1)) →RΩ(1)
f6(S(gen_S:0'2_7(0)), S(gen_S:0'2_7(1)), gen_S:0'2_7(0)) →RΩ(1)
0'
Induction Step:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, +(n64850_7, 1)))) →RΩ(1)
f1(gen_S:0'2_7(0), S(gen_S:0'2_7(0)), gen_S:0'2_7(+(3, n64850_7)), S(gen_S:0'2_7(+(3, n64850_7))), S(gen_S:0'2_7(+(3, n64850_7)))) →RΩ(1)
f2(S(gen_S:0'2_7(0)), gen_S:0'2_7(0), gen_S:0'2_7(+(3, n64850_7)), S(gen_S:0'2_7(+(3, n64850_7))), gen_S:0'2_7(+(3, n64850_7))) →RΩ(1)
f5(S(gen_S:0'2_7(0)), S(gen_S:0'2_7(+(2, n64850_7))), gen_S:0'2_7(+(2, n64850_7))) →RΩ(1)
f6(S(gen_S:0'2_7(0)), S(gen_S:0'2_7(+(2, n64850_7))), gen_S:0'2_7(+(1, n64850_7))) →RΩ(1)
f0(S(gen_S:0'2_7(0)), S(gen_S:0'2_7(+(2, n64850_7)))) →IH
gen_S:0'2_7(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f3, f4, f2, f5, f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f3.
(19) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f4, f2, f5, f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f4.
(21) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f2, f5, f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f2.
(23) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f5, f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f5.
(25) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
The following defined symbols remain to be analysed:
f6
They will be analysed ascendingly in the following order:
f4 = f2
f4 = f3
f4 = f5
f4 = f0
f4 = f6
f2 = f3
f2 = f5
f2 = f0
f2 = f6
f3 = f5
f3 = f0
f3 = f6
f5 = f0
f5 = f6
f0 = f6
(26) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f6.
(27) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
(29) BOUNDS(n^1, INF)
(30) Obligation:
Innermost TRS:
Rules:
f4(
S(
x''),
S(
x'),
x3,
x4,
S(
x)) →
f2(
S(
x''),
x',
x3,
x4,
x)
f4(
S(
x'),
0',
x3,
x4,
S(
x)) →
f3(
x',
0',
x3,
x4,
x)
f2(
x1,
x2,
S(
x''),
S(
x'),
S(
x)) →
f5(
x1,
S(
x''),
x)
f2(
x1,
x2,
S(
x'),
0',
S(
x)) →
f3(
x1,
x2,
x',
0',
x)
f4(
S(
x'),
S(
x),
x3,
x4,
0') →
0'f4(
S(
x),
0',
x3,
x4,
0') →
0'f2(
x1,
x2,
S(
x'),
S(
x),
0') →
0'f2(
x1,
x2,
S(
x),
0',
0') →
0'f0(
S(
x'),
S(
x)) →
f1(
x',
S(
x'),
x,
S(
x),
S(
x))
f0(
S(
x),
0') →
0'f6(
x2,
x3,
S(
x)) →
f0(
x2,
x3)
f5(
x1,
x3,
S(
x)) →
f6(
x1,
x3,
x)
f3(
x1,
x2,
x3,
x4,
S(
x)) →
f4(
x1,
x2,
x4,
x3,
x)
f1(
x1,
x2,
x3,
x4,
S(
x)) →
f2(
x2,
x1,
x3,
x4,
x)
f6(
x2,
x3,
0') →
0'f5(
x1,
x3,
0') →
0'f4(
0',
x2,
x3,
x4,
x5) →
0'f3(
x1,
x2,
x3,
x4,
0') →
0'f2(
x1,
x2,
0',
x4,
x5) →
0'f1(
x1,
x2,
x3,
x4,
0') →
0'f0(
0',
x4) →
0'Types:
f4 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
S :: S:0' → S:0'
f2 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
0' :: S:0'
f3 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f5 :: S:0' → S:0' → S:0' → S:0'
f0 :: S:0' → S:0' → S:0'
f1 :: S:0' → S:0' → S:0' → S:0' → S:0' → S:0'
f6 :: S:0' → S:0' → S:0' → S:0'
hole_S:0'1_7 :: S:0'
gen_S:0'2_7 :: Nat → S:0'
Lemmas:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
Generator Equations:
gen_S:0'2_7(0) ⇔ 0'
gen_S:0'2_7(+(x, 1)) ⇔ S(gen_S:0'2_7(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f0(gen_S:0'2_7(1), gen_S:0'2_7(+(3, n64850_7))) → gen_S:0'2_7(0), rt ∈ Ω(1 + n648507)
(32) BOUNDS(n^1, INF)